بسم الله الرحمن الرحيم والصلاه والسلام,على اشرف المرسلين اعزائي الطلبه مع حل,هذا التمرين رقم 81 اذا في هذا التمرين او,قبل ان نبدا لمن يشاهد القناه لاول مره,ارجو منكم الاشتراك في القناه وتفعيل,الجرس ليصلكم كل جديد اذا بالنسبه لهذا,التمين اعطيت لنا النقط الاربعه ا وبي وسي,ودي وطلب منا ان نبرهن ان المستقيمين ا,وسيدي متقاطعان اذا كان برهنا انه,متقاطعان علينا ان نبرهن انهما غير,متوازيان اذا هناك طريقتان اما ان نستخرج,معامل توجيه كل من ا وس دي ونبرهن انهما,غير,متساويان معامل التوجيه اذا كان معامل,توجيه مستقيم ا غير مساوي معامل توجيه,المستقيم س دي فهما غير متوازيين او,نستخرج شعاع توجيه المستقيم ab وشعاع,توجيه المستقيم c دي ونبرهن كذلك انه غير,متوازيان اذا نحاول ان نجد مركبات الشعاع,ab طبعا الشعاع ab هو ماذا بما ان,المستقيم ا عندما نقول مستقيم ab يعني ان,ا وبي تنتميان الى هذا المستقيم لو رسمنا,مثلا هنا مستقيم ا ا,ي اذا ا هذا الشعاع هو شعاع التوجيه لهذا,المستقيم اذا هذا الشعاع التوجيه المستقيم,اذا كان شعاع التوجيه ا وشعاع التوجيه سدي,غير متوازيان فهما طبعا المست,متقاطعان,اذا نحسب مركبات الشعاع ab طبعا عندما,يكون شعاع توجيه ما غير متوازيان يعني ان,المستقيمان كذلك غير متوازيان اذا ما هي,مركبات ab اذا مباشره مركبات ab طبعا هي,مركبات ب ناقص مركبات ا يعني سته احداثيات,ب ناقص احداثيات ا اذا ست ناقص صفر يعني 6,وثان ناقص 5 تعطينا ناقص 3,ومركبات,سدي الشعاع سدي هي اذا ناقص اان ناقص س,يعني ناقص,ت وواح ناقص 4 يعني ناقص,3 اذا طبعا كي نبرن ان هذين الشعاعين غير,متوازيان,نرى طبعا,نستخدم شرط الارتباط الخطي اذا اذا عن 6,في ناقص 3 6 في ناقص 3 ناقص ناقص 3 في,ناقص ت كم تساوي اذا تعطينا 6 في ناقص 3,ناقص,18 ناقص 3 في ناقص ت 27 في الناقص تعطيني,27 اذا والمجموع هنا,يعطينا ناقص 18 ناقص 27 تساوي الى ناقص,45 اذا وناقص 45 هي تختلف عن الصفر اذا,بما انها تختلف عن الصفر اذا,ab الشعاع,اب لا,يوازي لا يوازي الشعاع,سدي اب وسدي غير متوازيين اذا اذا كان ا,لا يوازي سيدي فيعني ان المستقيمان اب,وسدي كذلك غير,متوازيان اذا,ومن,المستقيم,اب والمستقيم سي,دي غير,متوازي اذا اذا كان المستقيم غير متوازيان,اكيد انهما متقاطعان اذا ومن,اب,وسيدي,متقاطعان طبعا الطريقه الثانيه هي اننا ان,نحسب معامل توجيه المستقيم ا ومعامل توجيه,المستقيم سدي ونبرهن انهما غير متساوي اذا,ثم قنا في,السؤال,او احسب نقطه تقاطعهما وتحقق منها ذلك,بيانيا,اذا حساب احداثيات نقطه تقاطعهما,حساب,احداثيات,نقطه,تقاطعهما,تقاطعهما طبعا كي نجد نقطه التقاطع بينهما,علينا ان,نحسب معادله المستقيم ab ومعادله المستقيم,سيدي طبعا ونساوي بينهما كي نجد نقطه,التقاطع اذا اولا نحسب معادله اب معادله,ا معادله,اب اذا,لتكن ا تساوي الى ا اكس زائد ي هي معادله,المستقيم اذا كيف نجد معامل توجيه مستقيم,ا طبعا باستعمال النقطه ا وبي اذا ا هي,ماذا قلنا هي اار اثنين ناقص اار واحد على,اكس اثنين ناقص اكس واحد اذا نكتب النقاط,هنا عندنا ا صفر خم وبي 6 اثنان اذا ا,تساوي ماذا طبعا هي اار,اثنين ناقص ا واحد نعيد كتابتها معلش اكس,اثنين ناقص اكس واحد,اذا تساوي طبعا ا اين ا اين,هي هي اثنان طبعا هذ هذه اكس واحد اكس اين,وهذ هذه اكس واحد وهذه اكس اين وهذه ا,واحد وهذه ا اين اذا ا اين هي,اثنان ناقص ا واحد ناقص خ على اكس اثنين,التي هي,ست ناقص اكس واحد التي هي,صفر اذا وتساوي اان ناقص خ كم ناقص ثلا,على 6 طبعا بالاختزال نقسم 6 على 3 تعطينا,ناقص واحد على اان 6 تقسيم 3 تعطينا اثنان,نقسم البسط والمقام على ثلاثه تعطينا ناقص,واحد على اان اذا وجدنا معامل توجيه,المستقيم ab كيف نجد ب طبعا بتعويض اما,النقطه ا او النقطه ب لان النقطه ا تنتمي,الى المستقيم ا والنقطه ب كذلك تنتمي الى,المستقيم ab اذا وجدنا ا اذا ا تصبح تساوي,الى ناقص واحد على اان اكس زائد ي,و تنتمي,الى المستقيم ab ماذا يعني يعني ان,احداثياتها تحقق لهذه المعادله او هذه,العلاقه,اذا ناخذ اكس يساوي فر تساوي خ اذا 5,تساوي الى ناقص واحد على ا في صفر,زائد ا ماذا يعني هنا طبعا هذه تعطينا صفر,اذا يساوي كم يسا,5 طبعا هذ نستطيع ان نقولها مباشره لان,النقطه هذه توجد على محور التراتيب,اذا المستقيم يقطع محور التراتيب في,النقطه التي فصلتها طبعا ترتيبها خ اذا,يساوي 5 اذا معادله ab اذا ab المستقيم ab,ياخذ المعادله تصبح ا تساوي الى ناقص واح,على ا اككس زائد 5 الان نحاول ايجاد,معادله المستقيم معادله المستقيم,cd بنفس,الطريقه اذا عندنا c كم س هي 7,4 ودي,ناقص ا,واحد اذا نفرض اذا,لتكن ا تساوي ا اكس زائد هي,معادله,سدي اذا كيف نجد معامل التوجيه,هنا نغير بما اننا كتبنا هنا ا اكس زائد,هنا نضع ا فتحه وب فتحه اذا كيف نجد معامل,توجيه المستقدم الذي هو ا فتحه اذا ا فتحه,يساوي كم اذا اار اثنين قلنا ناقص اار,واحد على اكس اثنين ناقص اكس واحد ويساوي,اذا اار اين ا اين هي ماذا هي واحد ناقص ا,واحد هي,4 على اكس اثنين ناقص اين على ناقص اكس,واحد يعني ناقص,س واح ناقص ا ناقص 3 ناقص ا ناقص س,تعطينا ناقص ت طبعا الناقص يذهب مع الناقص,ون اختزل على ثلاثه تصبح واحد على ثلا اذا,وهنا نلاحظ ننتبه جيدا معامل توجيه,المستقيم ا وجدناه واحد على ا ومعامل,توجيه المستقيم سدي وجدناه واحد على 3 اذا,نلاحظ انه مختلفان يعني ان المستقيمان,فعلا ا وسدي غير متوازيان لان انهما عند,طبعا مستقيم متوازيان يجب ان يكون عندهما,نفس معامل التوجيه نلاحظ ان معامل التوجيه,هما مختلف اذا فهما غير متوازيان يعني,انهما,متقاطعان اذا وجدنا ا فتحه تساوي واحد على,ثلاثه كيف نجد ب طبعا ناخذ النقطه دي او,النقطه سي تنتمي الى المستقيم هذا سي دي و,نجد بها قيمه ب ب فتحه عفوا اذا مثلا ناخذ,النقطه سي,او,دي ناقص اين واحد تنتمي الى المستقيم سدي,ماذا يعني يعني ان هذه النقطه تحقق ل,العلاقه هنا اذا تصبح طبعا المستقيم يصبح,ماذا يصبح ايك يساوي الى وجدنا ا فتحه,يعني ايك سيدي هو ماذا ايك تساوي الى واحد,على ثلاه اكس زائد ب فتحه اذا علينا ان,نجد ب فتحه طبعا النقطه النقطه دي او,النقطه سي اذا دي تنتمي الى سي دي معناها,ان احداثياتها تحقق لنا هذه العلاقه اذا,واحد ار اذا نعوض ا بواحد تساوي الى واحد,على 3 في ناقص,اان زائد ب,فتحه اذا ب فتحه ماذا,تصبح الى واحد طبعا هنا ب فتحه نتركها هنا,وهذه ننقلها الى الطرف اني هذه ناقص اين,على ثلاه اذا تصبح زائد اين على ثلاه,لتوحيد المقام ثلاثه اذا لاه نضرب واح في,3 زائد ا اذا تصبح خ على 3 اذا بي فتحه,تساوي الى 5 على 3ه اذا ومنه معادله,المستقيم سي دي هي ايك يساوي الى واحد على,3ه اكس زائد 5 على,3 اذا الانس الى ايجاد نقطه تقاطعهما,تقاطع المستقيمين طبعا وجدنا معادله,المستقيمين ا وسدي كيف نجد نقطه تقاطعهما,اذا لتكن النقطه ام هي نقطه التقاطع اذا,لتكن ام نقطه التقاطع اكس,ا طبعا حيث ام تنتمي,الى الى اب تقاطع,سدي اذا هذه النقطه كيف نجدها اذا اذا,قلنا ام هي تنتمي الى التقاطع بين ا ودي,يعني انها في نفس الوقت تنتمي المستقيم ab,وتنتمي الى المستقيم سدي يعني ان احداثيه,هذه النقطه تحقق لي العلاقه الاولى وتحقق,العلاقه الثانيه في نفس الوقت يعني,التساوي بينهما يعني ان هذه تساوي هذه اذا,ان النقطه ان تنتمي الى ab تقاطع سي,دي,يعني يعني ايك يعني ناقص واحد على اان اكس,زائد 5 تساوي واحد على 3 اكس زائد 5 على 3,اذا وتعود الى حل هذه المعادله ذات,المجهول اكس كي نجد هنا طبعا الفاصله,فاصله هذه النقطه اذا تعني اذا نحل هذه,المعادله نضع المجاهل في جهه والمعالم في,جهه اذا ناقص واحد على اثان اكس طبعا واحد,على 3ه اكس ناتي به الى الطرف الثاني تصبح,ناقص واحد على ثلاه اكس تساوي خمسه ناتي,بها ال الطرف الثاني اذا تصبح ناقص خ زائد,خ على 3 طبعا وضعنا المجاهل في جهه,والمعالم في جهه ناقص طبعا هنا ك اجمع بين,هذا الكسر وهذا الكسر علينا بتوحيد المقام,المقام المشترك بين,هنا عندنا اان وهنا عندنا 3 المقام,المشترك هو 6 اذا نضرب هذا الكسر في ثلا,وهذا الكسر في ا اذا,تصبح ناقص 3 اكس وهنا نضرب في ا اذا ناقص,ا اكس على,6 تساوي الى وهنا كذلك نوحد المقام المقام,مشترك اذا 3 في 5 ناقص 15 زائد 5 على,ثلاه اذا تصبح ناقص خ ناقص 3 اكس ناقص ا,اكس ناقص خ,اكس على,6 تساوي الى ناقص 15 زائد خ هي ناقص,10 على,ثلا اذا اكس تصبح تساوي الى طبعا هنا,الناقص يذهب مع,الناقص اذا اكس تصبح تساوي الى 10 على,ثلاه تقسم خمسه على,س اذا عندما نقسم كسر على كسر يعني نضرب,في مقلوب هذا الكسر يعني 10 على 3 مضروبه,في 6 على 5 طبعا 6 تقسيم 3 نستطيع نختزل,هنا عندنا ضرب تعطينا,اثنان و10 تقسيم 5 تعطينا كذلك,اثنان اذا وتصبح اثنان في اثنان وتساوي,الى اربعه اذا فاصله نقطه التقاطع هي,اربعه طبعا كيف نجد ا كيف نجد ترتيبها,طبعا بما ان هذه النقطه تنتمي الى,المستقيم ا والمستقيم سدي يكفي ان نعوض,اكس التي وجدناها اربعه اما في المعادله,الاولى او المعادله الثانيه لنجده,ا اذا نكتب هنا المعادله هذ واحد هذ,واحد اذا نعوض قيمه اكس في,واحد نجد ا اذا,نعو,قيمه,اكس في,واحد اذا تصبح اريك تساوي,الى ناقص واحد على اثان في,4 زائد,5 اذا ناقص 4 تقسيم 2 تعطينا 2 اذا تصبح,ناقص 2 زائد 5 وتساوي الى 3 طبعا نستطيع,ان نعوض كذلك هنا لو عوضنا هنا كذلك 4 اذا,تصبح 4 زائد 5 على ثلاه يعني ت على 3,وتصبح تساوي الى ثلاه اذا نقطه التقاطع,اذا,ومنها احداثيه ام,هي ماذا هي وجدنا اكس 4 وا,3 طبعا وقيل لا نتحقق من ذلك بيانيا اذا,نرسم معلم متعامد متجانس ونرسم المستقيمين,ونرى فعلا اذا كانت نقطه التقاطع هي 4 ثلا,اذا قلت كان نتاكد من ذلك,بيانيا علينا ان نرسم المستقيمين ab و سدي,اذا طبعا رسم مستقيم تكفي نقطتين ونحن,عندنا النقط عندنا النقطه ا وبي بهذه,النقط نستطيع ان نرسم مستقيم ab وبهذه,النقط نرسم المستقيم سي دي اذا نعين هذه,النقط ا هي صفر خ اذا ا هي صفر فاصلت صفر,ترتيبها خمسه طبعا هذه النقطه والنقطه,الثانيه هي 6 اثنان ي هي 6 اثان اذا سه,وترتيبها هو,اثنان هنا عندنا اثنان اذا ترتيبها اثنان,هي هذه النقطه اذا ونربط طبعا بين ه هتين,النقطتين لنجد المستقيم,ا اذا نرسم المستقيم,ا طبعا الذي يمر بالنقطه ا والنقطه,ي اذا النقطه ا والنقطه ب ا هذا هو,المستقيم ab ا نرسم الان المستقيم سدي,نعين النقطه سي التي هي سب ا طبعا هذه,النقطه ثم,النقطه دي التي هي ناقص اين واحد اذا هذه,النقطه اذا ونربط بين هاتين النقطتين لنجد,سدي طبعا هذا هو المستقيم يمر بالنقطتين س,ودي,ا هذا المستقيم,سدي اذا وننتبه جيدا الى نقطه التقاطع,بينهما اذا هي فعلا نلاحظ جيدا فصلتها هي,اربعه وترتيبها هو,ثلاثه طبعا هذه واح اثنين لا وهنا طبعا,عندنا اربعه ا هاه النقطه اذا تاكدنا فعلا,بيانيا ان نقطه التقاطع بينهما هي 4 ثلا,هذه النقطه,ان
🎥 هل تريد شرحاً مفصلاً بالفيديو؟ شاهد الحل كاملاً الآن!